

BCIT SCHOOL OF TRANSPORTATION

TRANSPORTATION PROGRAMS

Make your next career move

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

- BCIT is a public post-secondary polytechnic institution providing industry recognized applied credentials
- Approximately 18,000 full-time students and 28,000 part-time students enroll every year
- Courses taught by industry professionals who have a minimum of 5-10 years experience in the field, following their credential completion
- There are five campuses around Greater
 Vancouver including the Aerospace Technology
 Campus in Richmond, the Marine Campus in North
 Vancouver, and the Annacis Island Campus in Delta

BCIT SCHOOL OF TRANSPORTATION

- Aerospace
- Automotive
- Marine Studies

- Motive Power
- Technology Management
- Trades Access

Transformation in Transportation

- New technology can be found everywhere in transportation
 - Electrification in everything
 - Automated Driver Assistance Systems
 - Alternate and Synthetic fuels
 - How can the Educators keep up with these rapid changes?

Upskilling BC's Automotive Workforce

BCIT's EV Technician Training Initiative

Rising EV Adoption: As the number of EVS in B.C. continues to grow, there is a pressing need for technicians trained in high-voltage systems, battery diagnostics, and EV-specific technologies.

Post-Warranty Service Demand: As more EVs reach the end of their manufacturer warranty periods, owners are turning to independent shops for service and repairs.

Workforce Skills Gap: Current automotive technicians are trained primarily on internal combustion engine (ICE) vehicles and lack the specialized skills needed for safe and effective EV diagnostics and repair.

Responding to the EV Transition in BC

How it Started:

- Funded by the Ministry of Energy and Climate Solutions
- Focused on upskilling existing automotive technicians
- Objective close the knowledge gap for the aftermarket and independent repair shop techs
- Developed a one-week (36-hour) course to minimize workplace disruption

Ministry of Energy and Climate Solutions

Finding the right Expertise

• Our challenge:

- EV knowledge was not yet available inhouse or broadly in the industry
- Needed access to cutting-edge OEM EV service protocols

Leveraging Industry Relationships

The Power of Partnerships:

- Built partnerships via contract training and service agreements
- Faculty accessed OEM training programs for hands-on upskilling

Real-World R&D

Partnering with the City of Vancouver:

- Gained access to 144 City EVs for hands-on R&D
- Used fleet to inform practical curriculum components
- Collected real-world diagnostic data

Creating Comprehensive EV Learning Pathways

- Tailored OEM outcomes to fit industry technicians' needs
- Developed EV Service and Technology course
- Designed specifically for upskilling 3rd year apprentices & Red Seal technicians
- Mapped OEM outcomes into BCIT programs (not yet identified by RSOS)
- Integrated across Apprenticeship, Diploma, and Foundation

EV Service and Technology Pilot

Testing the Model:

- Launched pilot with City of Vancouver fleet technicians
- Used this pilot to test and refine our approach with experienced working technicians
- Refined delivery and validated curriculum

Train-the-Trainer Program Rollout

Expanding Provincial Capacity:

- Created EV 4011 Train-the-Trainer model
- Delivered course to 7 BC post-secondary institutions
- Scaled instructional capacity across the province

College of New Caledonia

Cross-Sector Demand - Growing Interest Beyond Automotive

Coouitlam

Delivered and tailored training for:

- First responders (RCMP, VFD)
- City and Municipal Fleets
- BC Marine Association
- BCAA
- Auto recyclers Schnitzer Steel
- Charging infrastructure installers
- International: Jamaica's HEART Trust Institute engineering students

National Expansion and New Partnerships

Scaling Impact Through C2R2 Funding:

- C2R2 funding allowed us to expand our reach and deepen partnerships at a national level
- Licensed our EV curriculum to 5 Canadian postsecondary institutions
- Launched Tesla START Apprenticeship program (first in Canada)
- Delivered exclusive EV training to BC Canadian Tire
 Service Centers

Canadian Colleges for a Resilient Recovery

Accelerating the Transition to a Zero-Emission Workforce

- Scalable, proven model with broad industry relevance
- Continuing to evolve to meet the needs of industry & Canada's zero-emission future
- Best practices being introduced to other SoT programs - Aerospace, MHDV, Marine and Rail

Class 8 electric tractor

Electric float plane

Rail freight goes electric

First all-electric tugboat

HV Battery Testing

- Currently diagnosing HV Batteries as vehicles are now exceeding the OEM warranty
- Batteries may be replaced as an entire unit, but many are still serviceable after requiring minor repairs



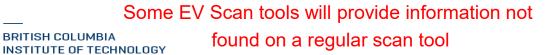
Image courtesy of Jim Berladyn

HV Battery Diagnosis

Multiple diagnostic approach for assessing HV Battery condition.

- Tested in the vehicle
- Tested dynamically while driving
- Tested out of vehicle on stand

Image courtesy of Jim Berladyn



HV Battery Diagnosis

- Battery diagnosis needs to be determined before removing battery from vehicle
- Technician needs to identify
 Module and cell location
 Individual cell voltage
 Battery Pack voltage Delta
 Temperature readings
 State of Charge

Image courtesy of Jim Berladyn

HV Battery on Stand

- Students connecting Volt HV Battery to scan tool to determine condition.
- For communication it will require:
 - Can +
 - Can –
 - 12V +
 - 12V –
 - Wake up signal

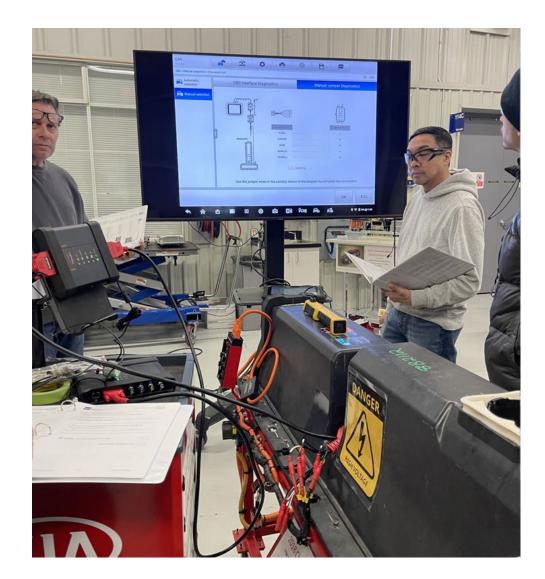


Image courtesy of Jim Berladyn

HV Battery on Stand

Students comparing HV Battery modules. Notice two modules in yellow that require maintenance and warning above it

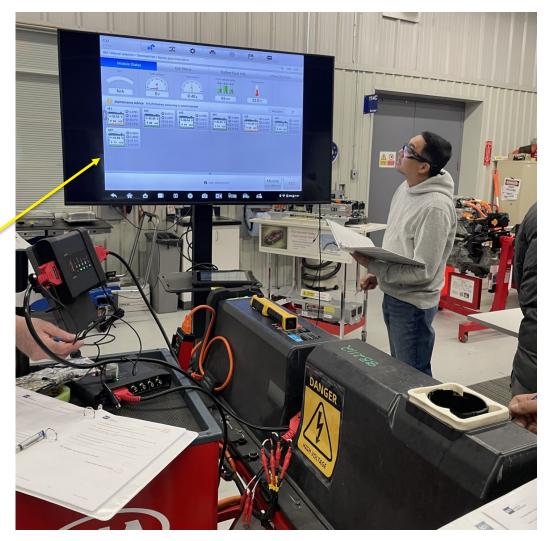
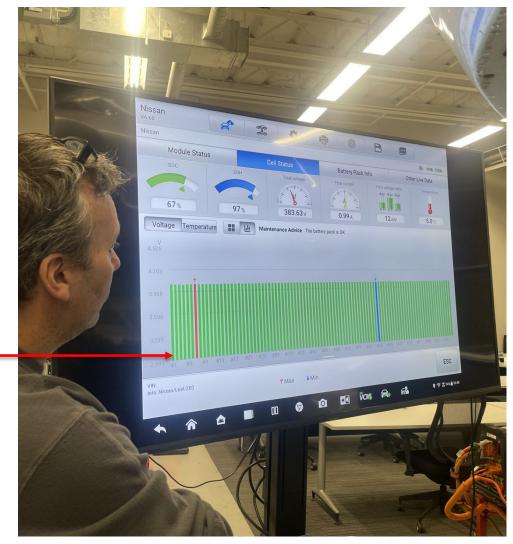


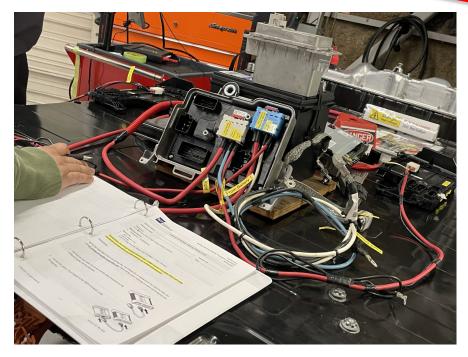
Image courtesy of Jim Berladyn

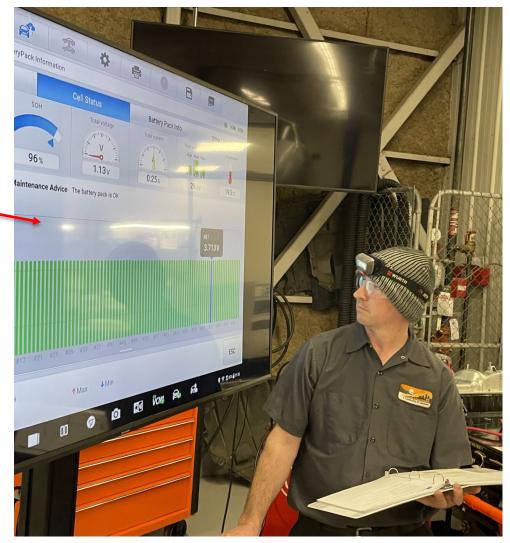
BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY



HV Battery on Stand

 Student determining highest and lowest cell voltage (HV Battery Delta) on scan tool


Student determining HV Battery module location

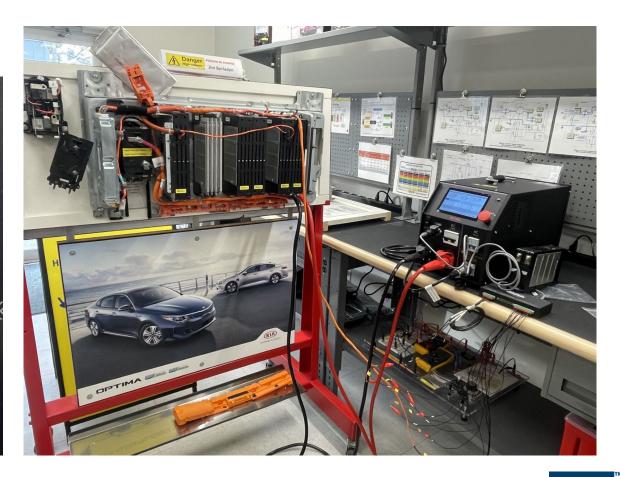

Tesla Model 3 Battery

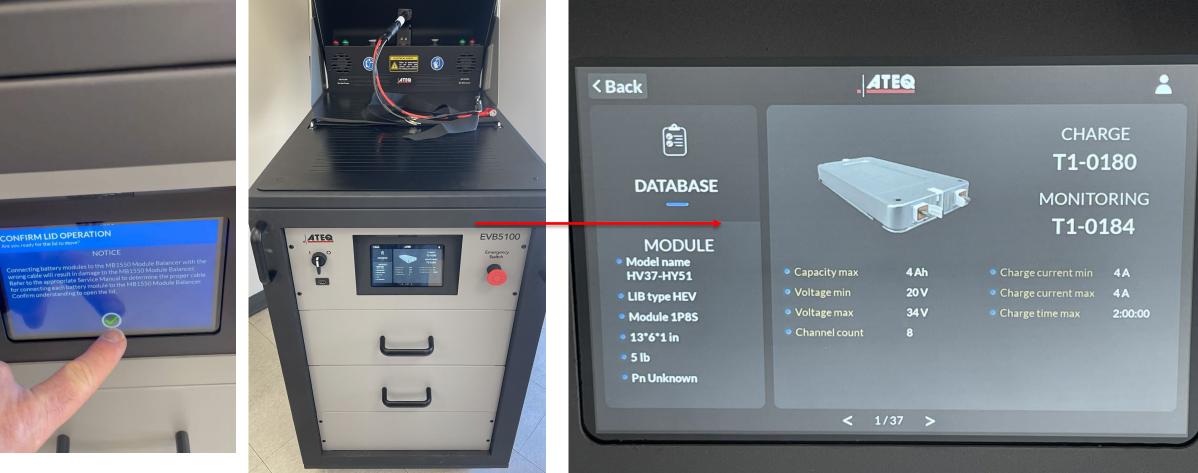
 Students checking cells in each module to determine battery health

Students checks low voltage (16volt) of circuit

Individual Battery Cell Test

- Used to test individual cell voltages
- This test will also help diagnosis an internal wiring and connector issues


Images courtesy of Jim Berladyn


Battery Balancing

Battery Status: Charge Test Capacity: 0.1Ah Charge Time: 00:01:08 Module Voltage: 28.636V Charge Curr: 6.0A Test Power: 0.172kW Max Cell Volt: 3.585V Min Cell Volt: 3.572V Voltage Delta: 13mV Max Temp: 17°C Min Temp: 17°C Cell Info Cell Voltage Module Voltage Cell Volt Cell Voltage Module Voltage Cell Volt.(V) Cell Volt.(V) Cell Volt.(V) Cell Volt.(V) 1# 3.572 2# 3.585 3# 3.584 4# 3.583 5# 3.582 6# 3.583 7# 3.579 8# 3.582 PAUSE STOP MODIFY	-			Charge			2025-01-24 01:50		
Module Voltage. 28.330V Untage Official System Voltage Delta: 13mV Max Cell Volt.: 3.585V Min Cell Volt.: 3.572V Voltage Delta: 13mV Max Temp: 17°C Min Temp: 17°C Voltage Cell Info Cell Voltage Module Voltage Cell Volt.(V) Cell Volt.(V) 1# 3.572 2# 3.585 3# 3.584 4# 3.583 5# 3.582 6# 3.583 7# 3.579 8# 3.582	Batte	ry Status: Charge					Charge Time: 00:01:08		
Max Cell Volt. 3.503V Min Temp: 17°C Max Temp: 17°C Min Temp: 17°C Cell Info Cell Voltage Module Voltage Cell Volt.(V) Cell Volt.(V) Cell Volt.(V) 1# 3.572 2# 3.585 3# 3.584 4# 3.583 5# 3.582 6# 3.583 7# 3.579 8# 3.582									
Cell Volt.(V) Cell Volt.(V) Cell Volt.(V) 1# 3.572 2# 3.585 3# 3.584 4# 3.583 5# 3.582 6# 3.583 7# 3.579 8# 3.582			/				stage Denta. 10.		
Cent Cont(v) Cent Cont(v) Cent Cont(v) 1# 3.572 2# 3.585 3# 3.584 4# 3.583 5# 3.582 6# 3.583 7# 3.579 8# 3.582	Cell Inf	o Cell Voltage	Module Vol	Itage					
1# 3.572 2# 5.330 5# 5# 5# 3.582 6# 3.583 7# 3.579 8# 3.582	Ce	II Volt.(V)	Cell	Volt.(V)	Cell	Volt.(V)	Cell	Volt.(V)	
3# 3.362 0m 0.000 1.0 0.000	1#	# 3.572	2#	3.585	3#	3.584	4#	3.583	
PAUSE STOP MODIFY	5#	# 3.582	6#	3.583	7#	3.579	8#	3.582	
						PAUSE	STOP	MODIFY	

OEM Balancer

Images courtesy of Jim Berladyn

HV Battery Diagnosis

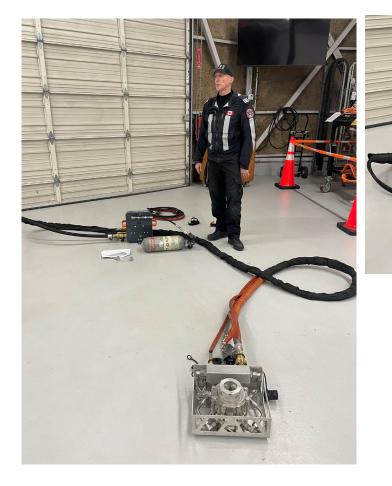
- Repairs need to be confirmed before installing battery into vehicle
- This may also help determine condition of used battery before purchase

Image courtesy of Jim Berladyn

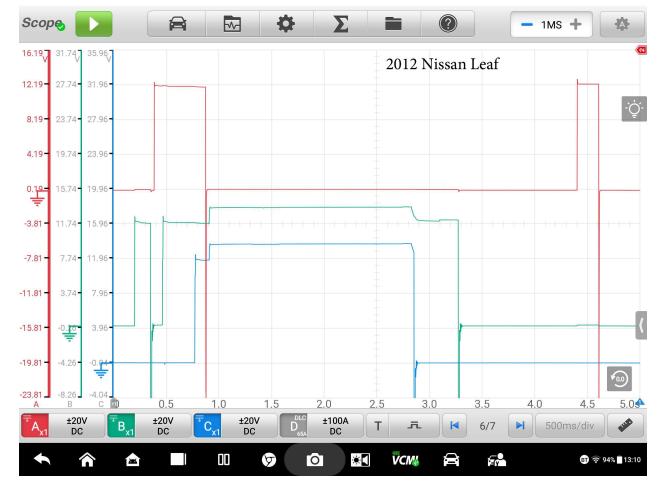

Dynamic HV Battery Test

Drive the vehicle and follow directions on scan tool

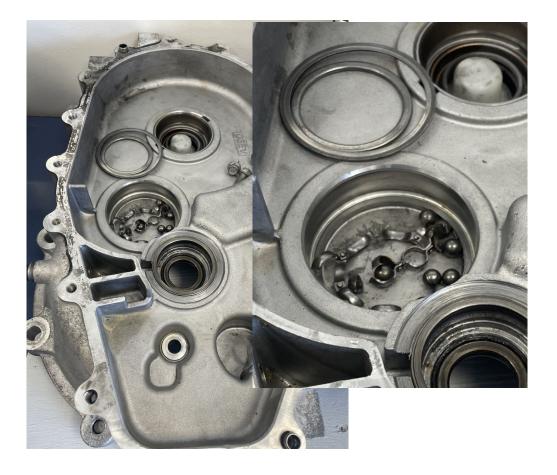
Battery Leak Testing

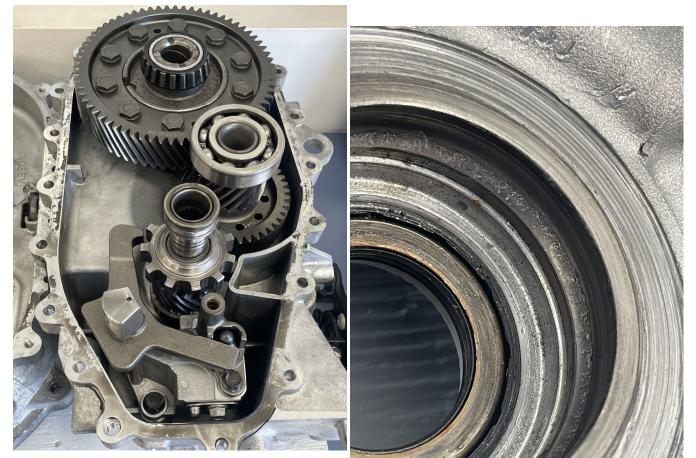


Images courtesy of Jim Berladyn



Photos: Courtesy of Jim Berladyn


Contactor Sequencing

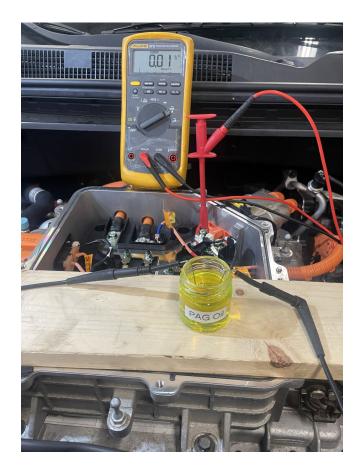


Images courtesy of Jim Berladyn

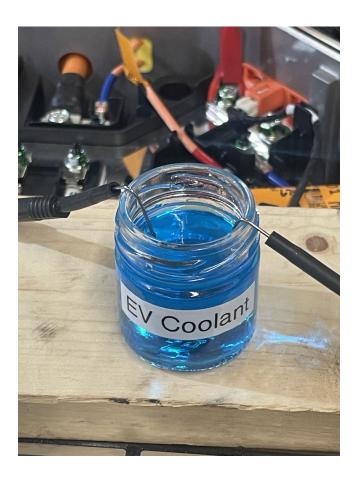
Bearing Failure

Images courtesy of Jim Berladyn

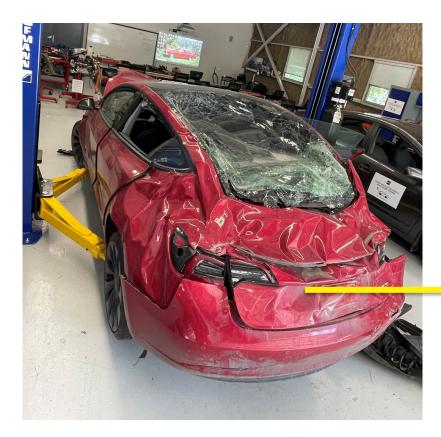
BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY



EV Fluids



Checking for HV Loss of Isolation



Images courtesy of Jim Berladyn

Training Aids

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

Tesla

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

DP World Training

EV Training Courses

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

QUESTIONS?

